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The quadratic map over p-adic numbers is studied in some detail. We prove that 
near almost all indifferent fixed points it is topologically conjugate to a 
quasiperiodic linear map. We also establish the existence of chaotic behavior 
and describe it using symbolic dynamics. 
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1. I N T R O D U C T I O N  

The purpose of this paper is to investigate the asymptotic behavior of non- 
linear p-adic mappings. Our motivation for such an investigation is based 
on the following considerations. First of all, the discovery of "chaos" (see, 
e.g., refs. 1) as well as of universal features in chaotic behavior (e.g., ref. 2) 
is undoubtedly a major achievement in the study of dynamical systems. It 
is certainly an interesting question, for its own sake, to ask whether chaos 
is a property of real or complex mappings or whether it also occurs in 
mappings defined over other continuous number fields, such as p-adics/3"4) 
We will show that indeed it does. 

It is obvious that in the description of physical phenomena one needs 
a "number field." Without getting too philosophical about the merits of 
various number fields, a rather minimal requirement would be that it 
contain the rational numbers, since, after all, the result of any measurement 
can be expressed as such. It turns out that there are only two types of com- 
plete extensions of the rationals: one is given by the real numbers and the 
other by p-adic numbers. Their essential difference comes from the property 
of the metric with respect to which they complete or fill the holes in the 
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rational numbers: in the case of the reals, the metric, given by the absolute 
value, is Archimedean, while in the case of p-adics the metric is non- 
Archimedean or ultrametric! 

Quite recently, in string theory as in lattice gauge theories, there has 
been a growing interest ~5 8) in exploring properties of physical systems 
when defined over p-adic (or even finite) ~9) number fields. In the case of 
strings, ~6-8) for example, since the world sheet parameters are not, intrin- 
sically, observable quantities, it is certainly legitimate to investigate the 
structure of the theory when these parameters are p-adic. So one is 
naturally led to the idea that a truly fundamental theory of the structure of 
matter should not only be independent of the parametrization used (which 
is certainly a key input of general relativity or of conformal invariant 
theories) but also of the number field in which this parametrization is 
expressed! This is a rather fascinating idea. 

As another motivation for the use of p-adics in the study of physical 
systems, it may be useful to remember the role of complex numbers in 
classical and quantum physics. Complex numbers are a quadratic extension 
of real numbers, but the added number i has of course no place in any 
classical phenomenon. Nevertheless, it is a triviality to point out that com- 
plex numbers and complex analysis have been useful and powerful tools in 
almost all branches of classical physics. In quantum physics, the situation is 
of course fundamentally different: from a tool, which they were in classical 
physics, complex numbers are promoted to an essential and unescapable 
ingredient of the physical picture of the quantum world. Quantum 
amplitudes are, fundamentally, complex numbers (see, e.g., ref. 10). We will 
not suggest that history may repeat itself and that p-adic numbers will turn 
out to be an essential ingredient in the description of physical reality. 
However, the discovery of the ultrametric structure of the ground states in 
spin glasses (11) makes one wonder. Ultrametricity is such an inherent 
property of p-adics that one cannot help speculating on the possibility of a 
sharper and more complete description of spin glasses in terms of them. It 
still remains to be done. 

There is a road leading back from p-adics to real numbers: it is the so- 
called adelic construction (see, e.g., ref. 4). Unfortunately, it is infinitely 
more complicated than, say, "taking the real part," which brings us back 
from the complex plane to the real line. The adelic construction has been 
explicitly performed in the case of four-point functions in string theory (7) 
and the result is rather spectacular: the product of all four-point functions 
on all p-adics and on the reals is equal to one! For five-point amplitudes, a 
similar result does not seem to hold, however. Anyway, whether a p-adic 
formulation of physical problems wilt remain a mathematical curiosity, a 
useful tool, or a fundamental step, only the future will tell. 
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Our main result in this paper is that p-adic dynamics exhibits striking 
similarities with real or complex dynamics(I): attractive or indifferent 
cycles, quasiperiodicity, ~t2)'3 and chaos all occur. There are some important 
differences, however: we do not find a cascade of period-doubling bifur- 
cations as a road to chaos. 

The analysis is also much simpler on p-adics than on the real or 
complex numbers. A similar observation had already been made in string 
theory, where p-adic amplitudes involve simpler functions. This also 
suggests that new concepts for dealing with nonlinear dynamics might be 
tested first on p-adics. 

For  simplicity we mainly restrict our discussion to quadratic p-adic 
maps, although, clearly, our methods and results can be extended to other 
mappings as well. We do not aim at the most general analysis of p-adic 
maps, but rather at illustrating different characteristic patterns of such 
mappings. 

The paper is organized as follows: in Section 2 we briefly list some 
pertinent properties of p-adic numbers and in Section 3 we describe some 
general features of quadratic iterations. In Section4, we analyze the 
behavior of the system near indifferent fixed points and prove, quite 
generally, that the quadratic mapping is topologically conjugate to a 
quasiperiodic linear one. Finally, in Section 5, we turn our attention to 
another region of parameter space of the quadratic map. Here, most points 
end up at infinity except for a Cantor set on which the iteration is 
equivalent to a simple "shift map" and hence is chaotic. We end up by 
giving a simple example of a (nonpolynomial) map which has chaotic 
behavior on a set of finite (Haar)  measure. ~3'4) 

2. THE p-ADIC NUMBERS: Qp 

In this section we briefly review some properties of p-adic numbers 
which are relevant to our problem. For  more details, we refer the reader to 
the mathematical literatureJ 3,4) 

Let p be an arbitrary but fixed prime number. Any rational number r 
can be written uniquely as 

r = p~a /b  (2.1) 

where ~, a, b ~ Z and p does not divide a or b. The integer ~ is called the 
ordinal of r (at p). 

The p-adic norm ]rip of r is defined as follows: 

[rip =p-= ;  IOlp = 0 (2.2) 

3 Some of our results agree with those obtained in ref. 12. 



896 Thiran e t  ai.  

Just as for the ordinary absolute value, which is now denoted 1.1~, it 
is straightforward to check that [.Ip does indeed define a norm on the field 
Q of rational numbers, namely 

Ixlp=O iff x = O  (2.3a) 

[xyl p= [xlp lylp (2.3b) 

Ix+ Ylp ~ Ixlp + lylp (2.3c) 

In fact, one easily shows that (2.3c) takes an even stronger form 

Ix+ y[ p <~ max { [x[ p, [Ylp} (2.3d) 

Norms with this last property are called non-Archimedean. 
With the help of the p-adic norm, one can easily define a distance, 

Cauchy sequences, etc. It is well to be aware of the fact that two rational 
numbers can be very close p-adically--e.g., when they differ by a large 
power of p--while very far apart in terms of absolute values and vice versa. 

It is also worth pointing out that I'[~o and ].[p (for all primes p) are 
the only inequivalent norms on Q.<3,4~ 

The field of real numbers N can be defined as the completion of Q with 
respect to [. [ ~. In precisely the same way, the field of p-adic numbers Qp is 
the completion of Q with respect to [.[p. In particular, Q is dense in Qp 
(with respect to [.[p) as well as in ~ (with respect to ]I+)- 

A less abstract definition of a p-adic number, which can be shown to 
be equivalent, is based on the following property: every p-adic number can 
be written in a unique way as a power series 

x= ~ xjp J (2.4) 

where e e 2~ is again called the ordinal of x and where the xj (called the 
digits) take integer values 

O<,xj<~p-1, 0 < x ~ p - 1  (2.5) 

The series (2.4) always converges (with respect to [.[p) and provides 
us with a very concrete realization of Qp. Note that it is unique, while in 
the case of ~, ambiguities are possible: 1 and 0.999... define the same real 
number. 

It is important to realize that while the absolute value [-[+, when 
extended from Q to N, can take any positive (real) value, the p-adic norm 
[.[p even when extended from Q to Qp keeps on taking a discrete set of 
values, namely powers of p. It follows that many elements of Qp have the 
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same norm. For example, there are an infinite number of "units" (i.e., 
numbers of norm IXlp= 1) given by 

x = Xo + ~ x:p j (2.6) 
j = l  

where the digit x o is different from zero. 
There is no ordering among p-adic numbers with the same norm. In 

this respect Qp is similar to the complex numbers C. The relevance of this 
remark comes from the fact that it is the ordered character of N which lies 
at the heart of, e.g., Sarkovskii's theorem. ~ 

The Qp's and ~ are all distinct number fields. For example, + i  and 
+x/ '6  belong to Qs but + x / ~  does not! What these assertions precisely 
mean is that the equations x 2 - 6 = 0 and x ~ + 1 = 0 do admit solutions on 
Qs while x 2 - 5 = 0  does not! More generally, one can show, as a con- 
sequence of Hensel's lemma, (3'4) that for any p-adic number aeQp,  its 
square root ~ will belong to Qp (p >>. 3) if a has an even ordinal and if its 
first digit is a square modulo p! 

The non-Archimedean nature of the p-adic norm has of course far- 
reaching consequences. First of all, it implies what is usually called 
"ultrametricity": any "triangle" with "sides" x, y, and x - y  is necessarily, 
isosceles, i.e., if, say, [Xlp < lylp, then I x - Y l p  = [Ylp! It follows that Qp is 
a disconnected field: subsets of Qp have no boundaries, or, more precisely, 
they are both open and closed with respect to the topology induced by l" [?. 
For example, the so-called p-adie integers Yp = { x l x  E Qp, ]Xlp ~< l } can 
also be defined a s  ~_p={XlX~Qp, ]Xlp<p}. This implies in particular 
that a "large" p-adic number cannot be constructed as the sum of many 
"small" ones or, in other words, that there is no "path" in Qp since the 
"path" concept relies on the possibility of covering a big distance in many 
small steps. These consequences of the non-Archimedean nature of the 
p-adic norm are somewhat counterintuitive and take a while to get used 
to. But there are also enormous simplifications that come with them. First, 
approximations are much easier to control than on ~, since small errors do 
not add up to give bigger ones. Similarly, the convergence of series is 
significantly simpler to study o n  Qp than on ~: the series Z a,q n will con- 
verge o n  Qp iff lim,~oo [anq"lp-+O. 

It should be clear from the preceding remarks that all theorems of real 
analysis which rely on the "connectedness" of ~ will have no p-adic 
counterparts. In particular, there is no intermediate value or mean value 
theorem and hence continuous functions from, say, Zp to 7/p will not 
necessarily have a fixed point. 

The field of complex numbers C is a "quadratic extension" of N. The 
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field C has the rather remarkable properties of being complete [with 
respect to the extended absolute value: la + bil ~ - - ( a 2 +  be) ~/2] as well as 
algebraically closed (every polynomial equation on C admits a solution in 
C). For  each Qp, there is also an algebraically closed and complete exten- 
sion f2p, which is, however, considerably more complicated to construct 
than C. We will have no use of s in this paper. 

Despite all the differences between ~ and Qp we will show in the next 
sections that simple nonlinear mappings on Qp present astonishing 
similarities with similar mappings on N! If nothing else, this strongly 
suggests that there are "characteristic features" of dynamical systems which 
do not even depend on the number fields used to model them. 

3. Q U A D R A T I C  M A P P I N G S  A N D  CYCLES 

Our main interest will be in quadratic mappings 

x ~ g ( x )  = a2x  2 + al x + ao (3.1) 

where x, a0, a~, a2 all belong to Qp and p i> 3. 4 

Through a simple conjugacy, (3.1) can be brought to the canonical 
form 

x ~ f ( x )  = x 2 + a (3.2) 

Indeed, let T be the linear transformation on Qp, 

T ( x )  = 2x + # (3.3) 

and thus 

T - X ( x )  = ( x -  #)/2 

Choosing 2 = a2 and # = al /2 ,  one easily obtains 

( T g T -  1)(x) = x 2 + a 

with 

More generally one has 

a = aoa2 + a f t2  - a~/4 

(3.4) 

(3.5) 

(3.6) 

4 As is often the case in number theory, p = 2 is somewhat special and we prefer to ignore it. 

Tg" = f " T  (3.7) 
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where g" denotes, as usual, the nth iteration of the map g. Conjugate maps 
are of course equivalent (~) in the sense that they exhibit the same 
dynamical properties such as cycles, fixed points, etc. 

Let us consider the mapping (3.2) starting from some initial p-adic 
number xi~. If la]p ~ 1, we have 

If"(&~)lp ~< 1 if Ix~,lp ~< 1 (3.8) 

and 

I f ' ~ ( x i n ) l p ~  if Ixi~lp > 1 (3.9) 

On the other hand, if [alp> t, starting with Ixffnl~> lal~ or IX~nlp< lal~ 
leads to 

, l im If~(x~n)lp ~ 

If [X~n]p = lalp, the iterative process will not diverge if and only if there is a 
"conspiracy" at each step such that 

[~fq(Xin)] 2 -~ af p = laf 1/2 (3.10) 

This is possible only if ~ belong to Qp. 
In the following we will be concerned only with orbits 

{x, f(x) ,  f2(x) ..... f " ( x ) }  which remain bounded when n ---, oo. 
Fixed points of the map (3.2) are solutions o f f ( x ) - - x ,  i.e., they are 

given by 

1 + (1 - 4 a )  1/2 
x+_ = 2 (3.11) 

where the square root may or may not exist in Qv depending on the values 
of a and p. Clearly, if this square root does not exist in Qp, there is no fixed 
point. 

Similarly, ~12) points of primitive period 2 are solutions of 

f2(x) - x -- 1 + ( - 3 -- 4a) 1/2 
- -  - 0 ,  i .e . ,  x +  = ( 3 . 1 2 )  
f ( x )  -- x - 2 

For  higher-order cycles, of course, exact formulas do not exist, in general. 
A cycle of order n, with fn ( f f )=  2, is attractive if, for x close to if, f"(x)  is 
closer. For  a smooth enough map, this is equivalent to [fn(s  1 and 
since 

f"(x) '  = f ' ( f " -  l(x)) f ' ( f " -  2(x)) ... f ' ( x )  (3.13) 
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and 

I f ' ( x ) l p  = 12xlp= [xlp (3.14) 

one easily concludes that  when [alp~ 1, there are two possibilities for a 
given cycle: either it wanders  through some x with [x[p < 1 and is at trac- 
tive, or it does not  cross such an x and is then indifferent, meaning  that  

[fn(x)--fflp= Ix--~lp (3,15) 

On the other hand,  when [alp > 1, only repelling cycles are possible, since 
one necessarily has values of x with Ixl p = la[ ~/2> 1. 

F r o m  the previous remarks,  one derives an easy procedure  for finding 
all at tractive cycles ( remember  lal p ~< 1 ): start  f rom xm = 0 m o d  p and com- 
pute its orbit  fk(xin ) modu lo  p as well. We know after at mos t  p steps 
whether  the orbit  passes through x = 0 m o d  p again or not, i,e., if there is 
an at tractive cycle or not. 

As an example,  let us take p =  5. If lal5 = 1, the first digit of  a must  be 
1, 2, 3, or 4, or, in other  words, a = 1, 2, 3, or  4 rood p. We successively 
compute  the orbits m o d  p: 

F o r a = l  m o d p :  

xin = 0 ~ f ( 0 )  = 1 ~ f2 (0 )  = 2 ~ f3 (0 )  = 0 

Hence, there is an at tract ive cycle of order  3. 
For  a = 2 m o d  p: 

Xin = 0 --* f(O) = 2 --+ f2(O) = 1 ~ f3(O) = 3 --+ f 4 ( O )  = 1 

which shows an indifferent cycle of order  2. 
Similarly, in a simplified notat ion,  for a = 3 m o d  p: 

Xin -~- 0 ~ 3 ~ 2 ~ 2 (indifferent fixed point)  

For  a -- 4 m o d  p: 

Xi n m_ 0 ~ 4 ~ 0 (attractive cycle of order  2) 

On the other  hand,  if [ a [ 5 < l ,  a = 0  ( m o d p )  and X i n = 0 - " t 0 ,  which 
indicates an at tractive fixed point. 

In general, one finds, of course, following Eq. (3.11), that  there is 
always a fixed point  at � 8 9  1/2] -~a  when [ a ] p < l  and, in this 
case, there is obviously no other  at tract ive cycle. 

W h a t  the example  also shows is that  there are only two subregions of 
values of a, with ]a[5 = 1, for which an at tract ive cycle is possible. Fo r  
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arbitrary p, there will be (p - 1)/2 such subregions. Indeed, for the orbit to 
pass through x = 0  (mod p) again, there must clearly be a solution to 
f (x)  = x z + a = 0 (mod p). Thus, an attractive cycle is possible only if - a  is 
a square in Qp and this is the case for precisely half the mod p values of a 
with [a[p-- 1. 

As a last remark, let us point out that an important feature of the 
p-adic quadratic map, in contradistinction with the real case, is the absence 
of bifurcations: there is no value of a for which an attractive fixed 
point splits into an attractive cycle of order 2. This is an unavoidable 
consequence of the disconnected nature of Qp. 

4. INDIFFERENT FIXED POINTS A N D  TOPOLOGICAL 
C O N J U G A C Y  

In this section we analyze in some detail the quadratic map near an 
indifferent fixed point. At the price of some extra algebra, a similar analysis 
could be made near indifferent periodic points. 

Assume thus that one computes the orbit of a point x near an 
indifferent fixed point to a given accuracy, say modulo p~+ l, 

X-=-Xo-kXlpq-  "" +x,,p", O<~xi<~p--1 (4.1) 

p-adically, this is quite meaningful, since the map involves only p-adic 
integers and since terms of norm p-(n+l)  can never add up to give a 
contribution of norm p-n  

To the approximation defined by Eq. (4.1), x can only take a finite 
number of values (precisely pn + 1) and its orbit, i.e., {x, f(x),  f2(x),... } will 
inevitably start repeating itself, after at most pn +1 terms. Iterations perfor- 
med on a few examples suggest that these orbits are approximately 
periodic, with periods growing regularly with the accuracy of the com- 
putation, and that the orbit of any point covers densely some subinterval of 
7/p. These are precisely the required conditions for having a "quasiperiodic" 
behavior. We will first show that the possible approximate periods are r .  p~ 
(2~>0), where r is the smallest divisor of p - 1  for which [ f ' ( x ) ] r =  1 
(mod p). 

To prove this statement, assume that 

f (x)  = x + a(x) p~ (4.2) 

with 

]f'(X)]p=l, f ' ( x )  r 1 (mod p), ]a(X)]p=l, ct>~l 
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Then 

f 2 ( x )  ~- f ( x )  + f ' ( x )  a(x) p" + ... 

~- x + a(x) p~ + f ' ( x )  ~r(x) p~ + ... 

Iterating this computation, one finds 

fm(x)"~  X-b [1 + f ' ( x ) +  "" -'k f ' m - l ( x ) ]  O'(X) p~ + "o" 

Thiran et al. 

(4.3) 

with I~(x)[ p ~ 1 and the first approximate period is thus r. Define 

h(x) = f r (x)  (4.6) 

Clearly, 

h ' ( x ) = f ' ( f  r l ( x ) ) . . . f ' ( x )  

[ f ' ( x ) ]  r= 1 (modp)  (4.7) 

Repeating for h(x) the calculation done above for f ( x )  gives 

h " ( x ) ~ - x + [ l + h ' ( x ) + . . . + h ' '  ~ ( x ) ] p ( x ) p ~ + l +  ... 

~ x + m # ( x )  p~+l+,. . . ,  I/~(x)lp ~< 1 (4.8) 

A more accurate approximate periodicity occurs for m = p  ~" and this 
completes the proof of the statement. 

However, this does not prove that the mapping is truly quasiperiodic: 
the chosen point x could be an element of a higher-order cycle, namely, it 
might happen that Eq. (4.8) reads 

h m ( x )  = X exactly [# (x )=  0] for some large m 

In the remainder of this section, we will show how topological 
conjugacy ~1) can be used to solve the problem. Rather than argue in full 
generality, we will show that in a suitable range of the parameter a and the 
point x, the quadratic map is equivalent to a linear map (actually the 
"derivative" map) and that this map is quasiperiodic. The conjugacy 
relating these two maps is of course nonlinear. 

Now, if r is the smallest divisor of p -  1 such that f ' (x) r  = 1 (mod p), then 

f r ( x ) ~ x  + #(x) p~+l + ... (4.5) 

1 - f ' ( x ) "  
x -t a(x) p~ + .. .  (4.4) 

1 - f ' ( x )  
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Let ~ be the exact indifferent fixed point of the quadratic map 
[Eq. (3.2)]. Thus, f ( ~ ) =  ~ and [f '(~)lp = 1. We consider a set of points 
close to ~7, i.e., 

x = ~ + 6  with 16[p~l/p (4.9) 

On this set, f ( x )  is linearly conjugate to g(6), 

g(6) = 2ff6 + 3 2 (4.10) 

Indeed, with 

T(6)= Yc + 6 (4.11) 

T - a f T =  g (4.12) 

Our next task is to show that under certain conditions, g(6) is 
topologically conjugate to the linear map L(6) with 

L(6)=2Yc6 := o96 (4.13) 

This linear map is of course much easier to study. In almost all cases, there 
are only two kinds of points: (i) 6 = 0, which is the fixed point; and (ii) all 
other points are quasiperiodic: their period increases forever as the 
accuracy defined by Eq. (4.1) improves. ~12) 

The only exceptions occur when ~o r is exactly equal to 1 for a divisor r 
o f p  - 1. If co r is only approximately equal to 1, we may write 

(~0 r =  I -~-7p a (4.14) 

with I~,lp= 1 a nd /~>  1, and, using the binomial expansion, 

(oor) p~ ~ 1 + p~Tp ~ + .-- :~ 1 (4.15) 

Let us assume, for definiteness, that 1 6 [p =p -L  To prove the 
topological conjugacy of L and g, we must construct an homeomorphism 
U from p~Y_p ~ p~Y_p such that 

Writing 

U ~LU= g (4.16) 

U(6) = q~6 + q202 q-- q363 + --. 

this series will converge if lim n ~ ~ Iqn6nl p --, O. 

(4.17) 
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coefficients q, are determined recursively from the 

(LU)(6) = (Ug)(6) (4.18) 

o r  

~o(q~6 + q262 + q363 + ...) = ql(o~6 + 62) 

+ q2(~06 + 62)2 + q3(o)( ~ + (~2)3 _[_ . . .  

This yields (qi may always be taken--  1) 

o9q2 = ql + q2 ~~ 

09q3 = 2q2~o + q3~o 3 

o9q4 -- q2 + 3q3 ~2 + q4 ~4  .... 

In general, we have 

(4.19) 

(4.20) 

and thus 

[(n--1)lr] pl [pE(.-l)l.lnl-~l [~_~__r 1] I - 1  
Iq,[p <~ 1--[ [27Pal = . ! (4.27) 

2=1 p 

1 - ~o ~r - -2~p a (4.26) 

{ [ ( n - 1 ) / r ]  is the integral part of ( n - 1 ) / r } .  

1 
Iq,[ p ~ I(1 - co)(1 - co2)... (1 - co"-1)[ p (4.24) 

1 
(4.25) 

I(1 - o)r)(1 - - ( D 2 r ) " ' ' l p  
~< 

Equation (4.14) yields 

2n 1 
(~O--~O2")qzn= ~ 2jq i (4.21) 

j = n  
2n 

(~o-o)2"+1)q2 ,+1= ~ 2~qj (4.22) 
j = n + l  

and, remembering that ]~o] p = 1, 

]2jJp and 12~]p~<l (4.23) 

It easily follows from these equations that, for n/> 2, 



p-Adic Dynamics 905 

Using the result (4) that for pk ~< m < pk + 1 

im!]p~ plm(1-p-k)/(p 1) (4.28) 

we finally obtain that 

,, .< ((,, 1)/r(p-1)}{(p 1)(r~, ~) 1} Iq.6 [p ~ Cp (4.29) 

Hence, the series for U converges if re - / 3  > 0 (for p ~> 3). 
We now specialize to the cases r = 1 and r = 2 and we show that the 

lack of convergence of (4.17) for re ~</~ is related to the appearance of 
other cycles in the neighborhood of the fixed point. If r = 1, then co - 1 
(mod p) and the fixed point satisfies 2 =  1/2 (mod p). The second fixed 
point thus has the same first digit as 2 [remember (3.11)]. Since the linear 
map L(6)= 226 has only one fixed point, it can be topologically conjugate 
to the quadratic map only in a neighborhood of 2 that excludes the other 
fixed point. It might be interesting to investigate the case a =  1/4, for 
which the two fixed points coincide and co = 1 (/~ ~ m). If r =  2, then 
co= - 1  mod p. This implies a =  - 3 / 4  rood p and 2 =  - 1 / 2  rood p. But if 
a = - 3 / 4 - d 2 / 4 ( l d l < ~ p - 1 ) ,  there is a 2-cycle at x+_=(- l+_d) /2 ,  i.e., 
close to the fixed point 2 = - 1 / 2  mod p. Once again one can verify that the 
condition "x belongs to a 'ball' centered at 2 and excluding the 2-cycle" is 
equivalent to r~ - /~  > 0. 

We illustrate this on two examples (both for p = 5, r = 2). 
First, consider a = - 3 / 4 - 1 . 5 2 +  .... There is a 2-cycle at x+ = 

- 1 / 2 +  1.5+...,  and the fixed point is 2 = - 1 / 2 - 1 / 2 . 5 2  .... giving co2= 
1 + 2 .52. . . ,  that is, fl = 2. Hence, the condition 2- ~ - fl > 0 requires ~ >/2, 
so that the quasiperiodic behavior is achieved for any point x strictly closer 
to the fixed point than the 2,cycle. 

On the other hand, if a =  - 3 / 4  + a l - 5  + (al ~ 0 )  (i.e., the 2-cycle 
does not exist), with the fixed point ~7 now around - 1 / 2  + al/2.5,  then 
o91= - 1  + a  1 -5, so that f i=  1. Here the condition 2 . c ~ - f i > 0  is fulfilled 
for any ~>~ 1: the map is quasiperiodic for every x such that Ix-215< 
l (x  = 2 +...). 

Our method for analyzing the behavior of a map around an indifferent 
fixed point is similar to the one used on C, with the role of ~o being played 
by a complex phase: exp(2niT). But finding which 7's lead to a convergent 
homeomorphism [see (4.16) and (4,17)] is a delicate matter, (13) in contrast 
with the simplicity of the p-adic case. 

To complete the proof of the topological conjugacy of the linear and 
quadratic maps, under the conditions just stated, it remains to be shown 

822/54/3-4-22 
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that U 1(6) exists or that the expansion for U-~(6) converges as well. 
Writing 

U -  1((~) = r 1 6  -k r 2 5 2  q- r 3 6 3  q- . . .  (4.30) 

and identifying coefficients of the powers of 6 in the identity 

U ' (U(6))  = 6 (4.31) 

gives recursive relations for the r,  : 

r, = ql = 1 (4.32) 

n 1 p 1 

r, = - ~ r s Z K~, 0~'q2~2... q,'n-,+x (4.33) . . . . . .  j+l--1 j + l  
j = l  ~1,~2 . . . .  0 

where the sums over c~ are restricted to 

1 - ~ 1 + 2 . ~ 2 +  .-- + ( n - - j + l ) ~ .  j + a = n  
(4.34) 

The coefficients K j are p-adic integers. From (4.33) one deduces 
O~ 1 ' ' ' O : n - j +  1 

that 

~1 ~2 . . . a n - j + l  [rnlp<~ m a x  {[rjlplqlq2 q . - j + l l p }  
l < ~ j < ~ n - - 1  

and using the bound previously derived on I qklp, namely 

[q~qp<~pE(~ ~)/r>k,, ~ = f l + ( p _ l ) - l > ~ l  (4.35) 

with the constraints on the ek, 

�9 .. ~~ (4.36) [q~ q._j+l[p<~p(U/~ J) 

which leads to 

Ir, lp~ max {Irj lpp (~/~)(" J)} (4.37) 
l ~ j ~ n - - I  

To find this maximum, consider the last term in this expression, namely 
Jr,_ lip p~/r. One has, from Eq. (4.37), 

Ir,_llp p~/r ~ max {Irjlp p (~/r)(n-j)} (4.38) 
l ~ j < ~ n  2 

Hence, this last term is not larger than any other one. Repeating the 
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argument, one concludes that no term in Eq. (4.37) is larger than the first. 
This finally leads to the same condition as before (re > p) and concludes 
the proof. 

5. C H A O S  

In this last section, we concentrate our attention on the quadratic map 
f [Eq. (3.2)] in the region [a[p>l .  As mentioned in Section 3, initial 
values of x such that [X2in[p>[a[p or IX2in[p<[alp lead to diverging 
sequences [fn(Xin)[ p ~ o0. More precisely, bounded orbits are possible only 
if a = -72 with ? an element of Qp. 

Let I be the compact set 

I = { x [  I x l ~  WI~} (5.~) 

It splits into three disjoint subsets, namely 

I + = { x l x = 7 + y ,  lylp~<l} (5.2a) 

I_ = { x l x =  - y + y ,  [Ylp<~ 1} (5.2b) 

Io = I\(I+ w I_ ) (5.2c) 

This last set contains the points which escape from I after one iteration o f f  
and thus eventually end up at infinity. On the other hand, I+ is mapped 
exactly once by f on the whole of I: 

(i) f ( x )  = f ( 7  + Y) = 2y7 + y2, hence [f(X)[p ~ [~[p. 

(ii) The equation f ( x ) - - z  for any z in I admits a unique solution in 
I t . Indeed, 

2y7 + y2 = z  (5.3) 

gives 

( z 
Y = - - 7 + 7  1+ ~ + . . .  

where the square root always exists since [Z/72[p ~ p--1 and p/> 3. The sign 
is chosen in such a way that [y[p~ 1. 

The same proof obviously holds for I_ as well. 
The points of I can now be split further according to their fate after 

two iterations. Focusing on the points which remain i n / ,  let us denote by 
I t + (respectively I t ) the subset of points in I t which is mapped onto I t 
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(respectively I ). The corresponding subsets of I_  will be denoted I_ + and 
I_ _, respectively. 

Repeating the procedure, it is clear that 2" subsets of I are mapped 
onto I by f "  and each of these subsets can be put into a one-to-one 
correspondence with a specific sequence of n + 's and - ' s .  

It will be convenient to introduce two (commuting) maps a and 
from the space of sequences of length n to the space of sequences of length 
n -  1: a will be the map corresponding to the "omission" of the first entry 
of a sequence, while z will omit the last entry. Thus, for example, 

G(+ + - ) = ( + - ) ,  ~ ( + + - ) = ( + + )  

Let us now assume that the following properties hold for all sequences 
s of length n: 

(a) Subsets of I corresponding to different sequences are disjoint. 

(b) f ( I s )  = I~(~), which implies that f " ( I ~ )  = I. 

(c) L=L(sI=L(,~(~"" = I .  

These properties are trivially true for n--  1 and 2 as indicated above. 
We will now show that if they are true for sequences of length n, they also 
hold for sequences of length n + 1 and hence they are valid for any length. 

Any sequence of length n + 1 can be written as s + or s - ,  where s is a 
sequence of length n. Property (c) implies that 

/~(s) = (I~(,)+ w I~(,) ) (5.4) 

The other points in I~(s) escape from I after n iterations. Property (b) and 
Eq. (5.4) allow us to define two subsets Is+ and Is_ of Is with 

f ( I s + )  := I~(,)+ =I~(,+~ 

f ( /~ -  ) : = I~(s)_ = I~( s_ ) 

/~+ and/~  are clearly disjoint since I~(s)+ and I~s) were assumed to be 
and this completes the recursive proof of (a)-(c). 

The image under f of a small interval of Haar measure 6 around a 
point x in I+ or I_  is an interval of measure If '(x)l  p 6 = [71; 6: all regions 
of I+ and I_ get "blown up" by the same factor [Tip. The measure of the 
subset of I corresponding to a sequence of length n in thus 

[Tip n+l  (I+ and I_ have measure 1) (5.5) 

By property (c), the set of points which do not escape from I lies in 
infinite intersections of nested closed intervals. These points, which are 



p-Adic Dynamics 909 

associated with infinite sequences of + ' s  or - ' s ,  form a closed, nonempty 
set which, because of (5.5), contains no intervals. This set is clearly "per- 
fect": every point is an accumulation point. There are indeed an infinity of 
points within a distance [Tip n+l of any point of this set since the 
corresponding sequences need only have identical first n entries. 

This set of accumulation points, which we will call A, is thus a Cantor 
set. To compute its Hausdorff dimension DA, we cover it with intervals of 
measure 6 = 171pn+ i. The Hausdorff dimension D measures the growth of 
the number N of such intervals when 6 ~ 0, 

Here, we have 

and hence 

N ~  (6) D 

2 ~ = 2(171 ; "  + ' ) - ( i n  2)/In rvlp 

In 2 
D A = - -  with lTIp>jp>J3 (5.6) 

In [Tip 

It may be useful to summarize what has been proven so far. When 
]a[ p > 1, most points of Qp eventually end up at infinity under iterations of 

f Points with a bounded orbit exist only if a =  - 7  2. They belong to a 
Cantor set A and each point of this set is in one-to-one correspondence 
with an infinite sequence s of + 's  and - ' s .  Two points in A are close to 
each other if the first few entries of the corresponding sequences are 
identical. On the set A, f takes the particularly simple form of the shift 
map a, 

G ( + s )  = ~ ( - s )  = s (5.7)  

It is quite remarkable that these results precisely correspond to those 
of the real map x--+l~X(1-x) when / t > 2 + x / / 5 .  Equation(5.7) is an 
example of symbolic dynamics/1) This particular dynamical system is 
simple enough to be completely understood. 

Before discussing the properties of such a system, let us first derive a 
more explicit expression for the points in the set A. A point x which 
remains in I after one iteration must be of the form 

x=)~ 17+Xo+XlT-l+x27 2+... (5.8) 

with 2 1 = + l .  Demanding that this point x belongs to A yields recursive 
equations for the "generalized digits" x i. These equations can be solved by 
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introducing for each i a new dichotomic variable 2i, with possible values 
+ 1. Then xi is expressed in terms of 2_ 1, 2o ..... 2i. The 2 i can be chosen to 
be precisely the entries of the sequence s previously associated with the 
point x of A. Equation (5.8) gives 

f (x )  = x 2 - y  2 = 2Xo2_1~ +... 

which must satisfy the same constraints as x, i.e., 2xo2_ 1 must be equal to 
20= +1: 

2Xo 2_ 1 = 2o 

The next step gives 

or x0 = 2_12o/2 (5.9) 

x = 2 _ l y + 2 _ 1 2 o / 2 + x 1 7  1+... 

f (x )  = 2oy + (1/4 + 22_1xl) + ... 

(5.1o) 

(5.11) 

and once again, 1/4 + 22_1xl must have the same form in terms of 20 and 
21 as the corresponding element x0 of the expansion of x had in terms of 
2_1 and 2o. 

Precisely, one must have 

�88 ~x1=2o21/2 or x1=�88 12o21-�89 (5.12) 

This procedure can obviously be repeated indefinitely. In general, the 
coefficient of order j of x, x s, is some expression A j(2_ 1, 2o ..... 2j) and the 
coefficient of the same order j o f f (x )  has the form 

Oj(.,~ l, 20 ..... 2j) + 22_1Xj+ l (5.13) 

It is always possible to solve the linear equation 

Bj(2_ l , . . .  , 2 j ) +  2 2 _ 1 x j +  l = A j ( 2 o ,  21 ..... 2j+t) (5.14) 

for xj+ 1. It is straightforward to show that [xjl p ~< 1. This proves that the 
points in A are given by convergent series 

j= 1 
+ 2  220+~(2_12021 1 x]7 J-~2_17 - -~2_1) y- 

-1-~2 121(2022- 1)'y-2q-... (5.15) 

where xj is a function of 2 _ 1 ,  2 0 ..... ~j. The sequence of dichotomic 
variables (2_1, 2o, 21,,..) is precisely the sequence s which was defined 
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previously and which was associated with the point x belonging to A. On 
the sequence (4_1,2o, 41,..), the dynamics is given by the shift map ~r, 
since, by construction, the poin t f (x)  depends on 20, 21, 22 .... in exactly the 
way the point x depends on ;o-1, 2o, 41,... 

Let us distinguish three types of points in the set A: 

(i) Periodic points: they correspond to sequences s with ~rn(s)=s; 
(+ ,  + ,  +,  +,...) and (an , , ,...) are T t h e  fixed points; 
( + - + -  + - + - + . . . )  cl ( - + - + - + -  - . . . )  make up the 
cycle of order 2, and so on. In particular, there are 2 n points of period n. 

(ii) Eventually periodic points, which correspond to sequences with 
G"(~(s)) = ~(s) .  

(iii) Nonperiodic points. 

The following properties are easily proved: 

1. Periodic points are dense in A 

2. The orbit of any point is highly unstable: the tiniest change of the 
initial point will have a large effect in the long run. This is usually called 
"sensitive dependence on initial conditions." 

3. There are (nonperiodic) points whose orbit is dense in A, i.e., the 
orbit of one point comes arbitrarily close to any point in A. A simple 
example is provided by the sequence constructed by successively listing all 
"blocks" of + 's  and - ' s  of length 1, 2, 3,... : 

s = ( + ,  - ;  + ,  + ;  +,  - ; - ,  + ;  , ; + , + , + ; + , + , - ; +  - +;etc . )  

Following Devaney, (1) a map with such properties is chaotic. We have thus 
proved that the p-adic quadratic map with [al p > 1 is chaotic on the Cantor 
set A. This disproves a conjecture made in ref. 12. 

It is clear that the techniques developed in this paper can be applied to 
other mappings. As an example consider 

f (x)=x3--y 3, [ ~ [ p >  1 (5.16) 

If 1 is the only cubic root of 1 belonging to Qp, only a single point has a 
bounded orbit: the fixed point. The situation is much more interesting if the 
other cubic roots of 1, ( - 1  + x/-S3)/2, also belong to Qp. The points 
which do not escape to infinity can be written as (p > 3) 

1 1 412) ~ 3 X " ~ 4  1]) -[- �89 141 ~-- 1 "q- 3 (34- -  14143 - 4  1 -[- ... (5.17) 

with 43_I=4~=43 . . . . .  1. This is again a Cantor set and the 
parametrization can be chosen in such a way that the action o f f  on the 
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point x is equivalent to that of the shift map on the sequence 
(2 1, ~1, 23, '") '  

An obvious question is whether chaotic behavior can occur not only 
on a Cantor set, but on sets of nonzero measure as well. The answer to this 
question is yes. Consider the following map from Zp to Zp: 

X=Xo+Xlp+x2p2+. . .  h ~ Xl + x 2 p q _ x 3 p 2 + . . .  (5.18) 

This map is p-adically continuous and differentiable, 

h'(x)= p 1 

h"(x)=0 

(5.19) 

(5.20) 

Nevertheless, because of the disconnectedness of the p-adic field Qp, the 
map is not trivial: h(x) is not the map x/p and it does not have a con- 
tinuous real counterpart. (3'4) The map h is again the shift map, but this 
time it acts on infinite sequences (Xo, xl ,  x~,...), where xi are the digits of a 
p-adic number, i.e., O<<,xi<~p-1. Clearly, the periodic or eventually 
periodic points for h are the rational numbers, while the nonperiodic points 
are those of Qp\Q. The conclusion is the same as before: the map h is 
chaotic! 
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